
Journal of Symbolic Computation 42 (2007) 265–289
www.elsevier.com/locate/jsc

Mathscape and molecular integrals

Michael P. Barnett∗

Meadow Lakes, East Windsor, NJ 08520, United States

Received 7 June 2005; accepted 13 July 2006
Available online 20 September 2006

Abstract

I have used MATHEMATICA to solve several problems that relate to the symbolic calculation of the
‘molecular integrals’ that are a mainstay of computational chemistry. This work has provided many new
results of chemical and mathematical interest, and it has led to a powerful programming methodology that
I call MATHSCAPE that uses a novel open ended set of macros. Some further work on molecular integrals
is presented here, largely as an introduction to MATHSCAPE. I discuss (1) the immediate mathematical
problem of the ‘J ’ integrals, (2) the key features of MATHSCAPE, (3) a novel reduction of the J integrals,
(4) the chemical context of this work, and (5) the computer science context.
c© 2006 Elsevier Ltd. All rights reserved.

Keywords: High level symbolic languages; Functional composition; Symbolic integration; Mechanized proof procedures;
Computational chemistry; Special functions of mathematical physics

1. Introduction

In the course of applying MATHEMATICA to computational chemistry, I have developed some
programming methods that can be transferred to symbolic calculation in many further areas of
research. I write the mathematical derivations in a style that I call MATHSCAPE. A large part
of my work deals with ‘molecular integrals’ that require 3n-fold integration over the Euclidean
space of n electrons (‘atomic’ and ‘molecular’ are chemical terms in this paper). The integrals
are an ongoing topic of research by many authors around the world. Recent papers include
Barnett (2003b), Cesco et al. (2005), Gumus (2005), Guseinov and Mamedov (2005), Harris
(2002), Quiney and Wilson (2005), Rico et al. (2005) and Safouhi and Bouferguene (2006).
These contain extensive bibliographies.

∗ Tel.: +1 609 426 6266.
E-mail address: michaelb@princeton.edu.

0747-7171/$ - see front matter c© 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jsc.2006.07.002

http://www.elsevier.com/locate/jsc
mailto:michaelb@princeton.edu
http://dx.doi.org/10.1016/j.jsc.2006.07.002

266 M.P. Barnett / Journal of Symbolic Computation 42 (2007) 265–289

My reasons for developing the MATHSCAPE style are discussed in Section 2 and its principles
are listed in Section 3. Then these are explained in Sections 4–6 using pieces of some scripts that
evaluate ‘overlap integrals’ symbolically. These are molecular integrals that relate to a system
of two nuclei and a single electron. The mathematical problem is stated in Section 4 together
with a set of algorithms to deal with it. These use ellipsoidal coordinates and feed directly into
the built-in integration resources of MATHEMATICA and other symbolic calculation platforms.
Most of my past work on molecular integrals has used polar coordinates and the ‘molecular ζ -
functions’ that I introduced in Barnett and Coulson (1951) and discussed most recently in Barnett
(2003b). These are needed for several kinds of molecular integral that are beyond the scope of
the ellipsoidal coordinate method. This paper contains new material on integration in ellipsoidal
coordinates, which is easier to explain for integrals that it covers than the ζ -function method.

Several MATHSCAPE scripts that are used in the symbolic calculation of the overlap integrals
are explained in Sections 5 and 6. Some further background of the molecular integral problem is
given in Section 7. The work is put in a broader computer science context, particularly in relation
to THEOREMA, in Section 8.

Further details of the calculations reported here are on http://www.princeton.edu/∼allengrp/
ms/mmi.

2. Reasons for mathscape

In the course of over 50 years of intermittent work on molecular integrals, starting in 1948, I
handwrote, typed and proofread dozens of accounts of the derivations that contained different
notations and different amounts of detail for numerous papers and reports (see e.g. Barnett
(1963) and Barnett and Coulson (1951)). In 1990, MATHEMATICA presented an opportunity to
reconstruct all the derivations in machine readable files that could be adapted mechanically for
variant needs without ever writing or typing any of the hundreds of definitions and intermediate
steps and final results by hand again. This was a major motivation for the MATHSCAPE style. It
has paid off on several occasions when I found, after coding the construction of a long sequence
of formulas, that I needed to redefine the objects in some of the early steps of a derivation, and I
was able to make the systematic variations with mechanical ease.

Another motivation came from my early experience of numerical computation. I was strongly
influenced in the 1950s by leading makers of numerical tables, who placed paramount emphasis
on the possibility of transcription errors and the necessity for checks. Years of experience of
numerical computations gave continuing reinforcement of this need. So did my early encounters
with MATHEMATICA — among other surprises this factored xy/2 into x , y and 1/4. Symbolic
calculation software has improved since then, but I continue to make mistakes and the need to
check remains. Although this need is rarely mentioned, other authors consider it essential, too
(Gracey, 1998; Wang and Kuppermann, 2006).

I was first alerted to the prospect of symbolic calculation by S.F. Boys in the 1950s. He
programmed the EDSAC computer to manipulate arrays of coefficients that represent molecular
integrals containing Gaussian factors e−kr2

in the integrands. I applied array manipulation and
syntactic methods to specialized symbolic calculations in the 1960s. Then, in the early 1990s, I
began to reconstruct all the formulas that I had developed for work on molecular integrals that
had not been superceded. In this project, I aimed:

1. to type as few mathematical identities as practical;
2. to validate these by tabulating special cases that were easy to check;
3. never to type a formula that could be obtained from formulas already in the files;

http://www.princeton.edu/~allengrp/ms/mmi
http://www.princeton.edu/~allengrp/ms/mmi
http://www.princeton.edu/~allengrp/ms/mmi
http://www.princeton.edu/~allengrp/ms/mmi
http://www.princeton.edu/~allengrp/ms/mmi
http://www.princeton.edu/~allengrp/ms/mmi
http://www.princeton.edu/~allengrp/ms/mmi

M.P. Barnett / Journal of Symbolic Computation 42 (2007) 265–289 267

4. to rederive results that were in the literature and to check for agreement, before going on to
results that could not be derived by hand.

This had several benefits:

1. it reduced the incidence of errors — I continued to make mistakes that checking detected, but
these were less frequent than when I typed elementary formulas from memory and constructed
‘obvious’ transpositions in my head;

2. it brought a variety of software needs to light;
3. it brought mathematical details to light that had been glossed over previously, in some cases

causing errors;
4. it identified elementary processes involved in mathematical reasoning.

I started to work this way as a matter of convenience, without a systematic methodology in
mind. But as time progressed, I found that I had fallen into a programming style that used
certain constructions and clichés repeatedly, and I started to write short scripts to encapsulate
these. After a couple of years, I organized these scripts in a MATHEMATICA package called bilo
and reported this (Barnett, 1993; Barnett and Perry, 1994a). I have supplemented the package
with further files for successive projects since then. These can be downloaded from my website
www.princeton.edu/~allengrp/ms. I provided a typesetting interface and called the entire
body of material MATHSCAPE (Barnett, 1998a; Barnett and Perry, 1994b). The typesetting is
entirely subordinate, however, to the mathematical manipulation that MATHSCAPE supports.

3. Mathscape principles

MATHSCAPE scripts are strongly mnemonic. The following general principles, conventions
and notations provide the framework for an open ended collection of representations and
functions, and give the basic information needed to read and to modify MATHSCAPE scripts.

P1. Mathematica platform: MATHSCAPE scripts are written in the MATHEMATICA language
and run in MATHEMATICA sessions. MATHSCAPE makes particular use of certain features of
MATHEMATICA and it facilitates the use of the full repertoire of MATHEMATICA functions.

P2. Postfix notation: MATHSCAPE scripts make heavy use of the MATHEMATICA postfix
notation x// f for the function f of argument x , that is usually typeset as f (x).

P3. Composition: The pipe operation: x // pipe[a1, a2, . . . , an] constructs x // ā1 // ā2
. . .// ān where s // ā is

1. s // a, when a is a unary function that is not of the form b`;
2. s/.u->v, when a is the replacement u->v;
3. s // b̄ // b̄`−1, when a has the form b` and ` is an explicit integer greater than 1;
4. s // b̄ when a has the form b̄1;
5. FixedPoint[b, a] (see Wolfram (2003)), when a has the form binfinity;
6. s // pipe[α1, . . . , αm], when a is the list {α1, . . . , αm}.

P4. Unary wrappers: MATHSCAPE wraps many binary MATHEMATICA functions in Curry style,
e.g. Collect[s,u] as collect[u][s] and Take[s,{m,n}] as take[{m,n}][s].

P5. Targeting: This focuses action on a piece (or n-tuple of pieces) of an expression. The name
of a targeting function begins with the word to. Many of the targeting functions wrap the built-in
MATHEMATICA MapAt function, but they are much easier to read. Also, the repertoire is very
easy to extend. The names of the main kinds of targeting function are as follows:

268 M.P. Barnett / Journal of Symbolic Computation 42 (2007) 265–289

1. toTheLhs, toTheRhs, toTheIntegrand, toTheSummand, toTheDerivative,
toTheIntegral, toTheSum, toTheCos, toTheExp, toBothSides and other functions that re-
fer to a piece of an expression, or a pair of pieces, by a coalesced phrase containing a recognizable
name. A name that begins toThe implies that the target is unique. The first occurrence is selected
if the target is not unique. The full form of a targeting expression is: s // to· · ·[a1, a2, . . . , an].
This converts each targeted piece t in s to t // pipe[a1, a2, . . . , an] in situ.

2. toThe[v]. This targets the first or only subexpression which matches v or v[. . .]. v may be
a pattern. The function is extremely versatile.

3. toEachElement, toEachFactor, toEachTerm and other functions that refer to all the pieces
with a particular role. Each toThe. . . function is paralleled by a toEach. . . function. The initial
effects are independent, e.g. a+b//toEachTerm[f] gives f[a]+f[b], but these may produce
subexpressions that MATHEMATICA combines automatically. The pieces are modified consecu-
tively from right to left. This is significant, e.g. in line (* 42 *) of op[Jnaf] in Section 6.1.

4. toTheArgumentOfThe[u], toTheCoefficientOfThe[u] and other functions that target by
context.

5. toElements[{cursors}], toFactor[predicate], and other functions with names of the form
to· · ·[qualifier], where the qualifier is either a cursor list or a predicate or both, and illustrative
predicates include containing[u], innermost and ad hoc truth functions of the targeted ex-
pression, expressed in Function notation.

6. collectivelyToTerms[cursorList] and corresponding functions for factors and
list elements. These combine a set of subexpressions. For example: (a+b+c+d) //
collectivelyToTerms[{1,2,3}][f] gives f[a,b,c]+d.

P6. Eqn objects: Equations and identities comprise the bulk of mathematical discourse through-
out the natural sciences. For well over 100 years, equations have been labelled for reference in
such discourse. Accordingly, the assignment eqn[id]=(u==v) in a MATHSCAPE session makes
id refer to the equation u==v in certain contexts that are described next.

P7. Implicit rule formation — literal: The objects with the heads that begin brule are replace-
ment rules that are evaluated automatically as follows:

1. bruleFor[u==v] has the value u->v.
2. bruleFor[{u1==v1, u2==v2, . . .}] has the value {u1->v1, u2->v2, . . .}.
3. brule[id] has the value of bruleFor[eqn[id]].
4. bruleReverseFor[u==v] has the value v->u.
5. bruleReverseFor[{u1==v1, u2==v2, . . .}] has the value {v1->u1, v2->u2, . . .}.
6. bruleReverse[id] has the value of bruleReverseFor[eqn[id]].

P8. Implicit rule formation — generic: The objects with the heads that begin grule are pattern
replacement rules that are evaluated automatically as follows:

1. gruleFor[u==v] has the value û:>v, where the pattern symbol _ is attached to each variable
in u to form û.

2. grule[id] has the value of gruleFor[eqn[id]].
3. gruleReverseFor[id]has the value v̂:>u.
4. gruleReverse[id] has the value of gruleReverseFor[eqn[id]].
5. the grule object of a list is the list of grule objects of the members.

M.P. Barnett / Journal of Symbolic Computation 42 (2007) 265–289 269

For consistency of notation, a statement grule[id]=û:>v is used at times to introduce a pattern
replacement directly, in the absence of a supporting eqn[id], e.g. when û is conditionalized.
The pattern type is changed by a function with usage illustrated by changeRule[x_][x_.] that
changes x_ to x_. (which connotes optional presence).
P9. Latentized action: MATHSCAPE wraps many MATHEMATICA keywords in names that begin
in lower case or end in $ to suppress the properties that MATHEMATICA provides automatically.
For example, sqrt, exp, sin, pi, infinity and D$ wrap Sqrt, Exp, Sin, Pi, Infinity
and D, respectively. useElementary, useBuiltinIntegrate and other functions with similar
mnemonic names replace the MATHSCAPE names by the MATHEMATICA names that provide the
built-in properties when needed. disuseElementary and related functions perform the inverse
operations.

P10. Range qualified operators:
∑k

i= j (si) and
∫ b

x=a s(x) dx are written sum[i,j,k][s[i]]
and integral[x,a,b][s]. Multiple sums and integrals are usually nested, as in
integral[x,a,b][integral[y,c,d][s]]. Similar notations are used for path and other
integrals, and for indexed products, arrays and other aggregates.
P11. Reindexing: reindex changes the index of sums and other aggregates.
P12. Range splitting: splitTheRange splits sums, other aggregates and integrals at a specified
point in the range of indexing or integration.
P13. Range joining: joinTheRanges has the converse effect.
P14. Range extension and expansion: leftExpand and rightExpand split the low and
high order elements out of a sum or other indexed aggregate; leftExtend and rightExtend
decrease and increase the range of the index; all with appropriate compensatory action. Also,
fullExpand converts a sum or a prod to an explicit Plus or Times when the range is an explicit
integer.
P15. Distribution of aggregates: expandAndDistribute expands a summand or integrand and
distributes the operation across all the terms that result.
P16. Operand inclusion and exclusion: moveCoefficientRight moves the multiplier of a
sum (integral) into the summand (integrand).
moveCoefficientLeft moves the factors in a summand (integrand) that are independent of the
summation index (variable of integration) to precede the sum (integral).
P17. Elementary algebraic operations: factor removes factors that are common to the
factor lists of successive terms in a Plus. factorOut[c] converts (x1 + · · · + xn) to c ∗

(x1/c + · · · + xn/c) when c 6= −1 . factorOut[-1] factors out Hold[-1]. This is needed
because MATHEMATICA automatically restructures e.g. −(n + 1) to (−n − 1). distribution
moves selected factors of a Times onto selected terms of another factor that is a Plus.
Several collect. . . functions collect on powers, heads and arguments. Other functions perform
elementary transpositions. solveLinear[w][u==v] solves the equation u==v that is linear
in the subexpression w. Several built-in MATHEMATICA functions for elementary algebraic
processes embody powerful algorithms, but these do not address quite a few practical needs
that are relatively mundane.
P18. Compensatory operations: these include

a // multiplyAndDivideBy[b] -> a b/HoldForm[b],
a // divideAndMultiplyBy[b] -> a HoldForm[b]/b,
a // addAndSubtract[b] -> a+b-HoldForm[b],
a // subtractAndAdd[b] a-b+HoldForm[b].

P19. Integration: several functions (i) support integration by parts and by change of variable
that are specified in convenient ways, and (ii) change the order of integration in multiple integrals
where inner limits depend on outer variables.

270 M.P. Barnett / Journal of Symbolic Computation 42 (2007) 265–289

Fig. 1.

P20. Commutation: several functions and grules commute the linear operators of summation,
integration, differentiation and limit formation.

P21. Assumptions and conditionality: these are supported by simple notations and functions
that propagate assumptions into a conditional expression and resolve the conditions accordingly.
Often, I write a predicate as is[property][object], e.g. is[even][n] and provide grules to
compute the truths of these expressions, e.g. is[odd][n+m+2q] from the truths of is[odd][n],
is[odd][m] and is[integer][q].

P22. Local names: to make scripts more readable, local names are introduced trivially
as wrappers for the functions described above. For example, the function defined by
toThePlusContaining[z_] := to[Plus][containing[z]] is used in the script following
(40).

P23. Unconventional objects: on several occasions, an analysis of the reasoning applied to
a problem has been formalized in some syntactically well formed expressions that do not
correspond to conventional mathematical notations. A simple tactic to capture and modify pipe
expressions is illustrated at the end of Section 5. Whilst this is the essence of n-th order logic,
I have not seen it formalized in work on special functions. A way to convert a very long
equation to an abbreviated form that contains names in place of lengthy subexpressions, with
accompanying equations that associate the names with these, is given at the end of Section 6.2.
pipe representations of flow diagrams that support mechanized optimization are discussed in
Barnett (2003b). These are mentioned, in large part, to prompt readers to develop further novel
objects to facilitate mechanized mathematical reasoning.

4. The J integrals

The overlap integrals are linear combinations of certain ‘J ’ integrals that involve the
geometrical parameters shown in Fig. 1. These relate to a system of three points A, B and P . I
refer to these, respectively, as two fixed atomic nuclei and an electron that moves through space.
This does not lose mathematical generality.

The internuclear distance AB is denoted by ρ and the distances of the electron from the nuclei
by ra and rb. The angles subtended at A and B by B P and AP are denoted by θa and θb. The
out-of-plane coordinate is the azimuth φ, measured counterclockwise around the polar axis AB
from the plane of the paper. The general form of the J integral is:

M.P. Barnett / Journal of Symbolic Computation 42 (2007) 265–289 271

Jna ,ma ,`a ,nb,mb,`b (α, β, ρ) =

∫
R3

e−αra e−βrbrna
a rnb

b cosma θa cosmb θb sin`a θa sin`b θb dV,

(1)

where:

nb ≥ `b + mb − 1, na > `a + ma − 1, `a + `b is even. (2)

The arguments (α, β, ρ) are implied, when omitted. The symbol dV denotes the space element
of the Euclidean space R3 of the electron. The closed formulas consist of exponentials and
polynomials when na ≥ `a + ma and, additionally, exponential integrals and logarithms when
na = `a + ma − 1. The first case provides enough examples for present purposes. Formulas
for about 50 J s with na + nb ≤ 3 were constructed manually by Charles Coulson in the early
1940s (Coulson, 1942). He was my thesis advisor a few years later, and I think that he originated
the idea of using ellipsoidal coordinates for these integrals. In Section 6.3, I derive a general
formula that covers the J s with na ≥ `a + ma . This has not been done before. It would have
been impossible (and unusable) a few years ago. My work with MATHEMATICA has shown that
the J s in Coulson (1942) contain errors and that the numerical values of overlap integrals which
were computed electronically by several authors contain errors, too. The most serious is the
value that rounds to −5 × 10−8 in Öztekin et al. (2001). My rounded value for this integral is
−8 × 10−78 (Barnett, 2002). I computed this by a scheme that involves a hierarchy of closed
formulas, using unrestricted precision arithmetic. This particular integral is a linear combination
of J s with na = nb = 75, `a = 0, 2, . . . , 30, `b = 0, 2, . . . , 20. The results in the present
paper agree completely with my results in Barnett (2002). The new formulas in Section 6 avoid
the recursions that earlier methods require.

The ellipsoidal coordinates λ and µ are defined by:

λ =
ra + rb

ρ
, (3)

µ =
ra − rb

ρ
. (4)

From elementary considerations,

ra =
ρ

2
(λ + µ), (5)

rb =
ρ

2
(λ − µ), (6)

ra cos θa =
ρ

2
(1 + λµ), (7)

rb cos θb =
ρ

2
(1 − λµ), (8)

ra sin θa =
ρ

2

√
(λ2 − 1)(1 − µ2), (9)

rb sin θb =
ρ

2

√
(λ2 − 1)(1 − µ2). (10)

R3 is covered by {1 ≤ λ < ∞, −1 ≤ µ ≤ 1, 0 ≤ φ ≤ 2π}. Hence the Jacobian with the
non-negative value:

∂(x, y, z)
∂(λ, µ, φ)

=
ρ3

8
(λ2

− µ2) (11)

272 M.P. Barnett / Journal of Symbolic Computation 42 (2007) 265–289

and the space integral:∫
R3

s dV =
ρ3

8

∫
∞

λ=1

∫ 1

µ=−1

∫ 2π

φ=0
s × (λ2

− µ2) dλ dµ dφ. (12)

Then any J integral can be evaluated symbolically by Algorithm I below. To illustrate its
operation, consider the simplest example, J−1,0,0,−1,0,0:

J−1,0,0,−1,0,0 =

∫
R3

exp [−αra] exp [−βrb]
rarb

dV . (13)

Replace ra , rb and dV using (5), (6), (12). This converts the integral to:

ρ3

8

∫
∞

λ=1

∫ 1

µ=−1

∫ 2π

φ=0

[
exp

(
−αρ(λ + µ)

2

)
× exp

(
−βρ(λ − µ)

2

)]
ρ(λ + µ)

2
×

ρ(λ − µ)

2
× (λ2

− µ2) dλ dµ dφ. (14)

Simplifying the integrand converts this to:

ρ

2

∫
∞

λ=1

∫ 1

µ=−1

∫ 2π

φ=0
exp

[
−

(
ρ(α + β)

2
λ +

ρ(α − β)

2
µ

)]
dλ dµ dφ. (15)

Elementary methods then give:

4π

α2 − β2

[
e−βρ

− e−αρ
]

when α 6= β, and 2πρe−βρ when α = β. (16)

When any of the indexes ma , `a , mb, `b is nonzero, cos θa , sin θa , cos θb and sin θb are replaced
using (7)–(10). All cases are covered, accordingly, by

Algorithm I:

1. write the integral in the form (12),
2. in the innermost integrand:

(a) use (7)–(10) to replace each trigonometric function by an expression containing λ and µ;
(b) use (5) and (6) to replace residual occurrences of ra, rb;
(c) expand the resulting product of polynomials of λ and µ;
(d) coalesce the product of exponentials using the identity eu

× ev
= eu+v;

(e) expand the integrand into terms of form:

λpµq exp
[
−

ρ{α(λ + µ) + β(λ − µ)}

2

]
; (17)

(f) expand the argument of the exponential, collect coefficients of λ and µ, and factor the
exponential into separate functions of λ and µ;

3. distribute the integration over the terms:

λpµq exp
[
−

ρ(α + β)

2
λ

]
exp

[
−

ρ(α − β)

2
µ

]
; (18)

4. integrate over φ in each of the resulting terms, using
∫ 2π

0 dφ = 2π ;
5. integrate over µ using a formula for

∫ 1
−1 x p exp(−kx)dx ;

6. integrate over λ using a formula for
∫

∞

1 x p exp(−kx)dx .

M.P. Barnett / Journal of Symbolic Computation 42 (2007) 265–289 273

The built-in Integrate function of MATHEMATICA integrates the result of step 2(b) in about
40 s for J−1,0,0,−1,0,0 and in about 3 min for J3,0,0,3,0,0 on a Sun Solaris (UltraSPARC). These
times make the direct application of the algorithm to individual integrals prohibitively slow for
high indexes. A faster algorithm factors each triple integral of a term that has the form (18) into
three independent integrals over λ, µ and φ, respectively, and uses:∫

∞

x=1
xne−kx dx =

e−k

kn+1

n∑
`=0

[
n!k`

`!

]
(19)

∫ 1

x=−1
xne−kx dx =

1
kn+1

n∑
`=0

[
n!k`

(
(−1)kek

− e−k)
`!

]
(20)

∫ 2π

0
dx = 2π. (21)

Algorithm II:
1. same as step 1 in Algorithm I;
2. same as step 2 in Algorithm I;
3. same as step 3 in Algorithm I;
4. factor the integral of each term of the form (18) into three one-dimensional integrals;
5. replace these one-dimensional integrals using (19)–(21).

Algorithms I and II can be applied to any specific J integral with explicit integer subscripts
that meet the constraints (2). Step 2(c) of Algorithm I, ‘expand the product of polynomials of λ

and µ’, assumes the ability to expand binomial expressions such as (λ+µ)n for explicit positive
integer n. Now assume the ability to use the binomial theorem for symbolic positive integer n.
This allows the following extension:

Algorithm III:
1. same as step 1 in Algorithm I;
2. in the innermost integrand:

(a) same as step 2(a) in Algorithm I;
(b) same as step 2(b) in Algorithm I;
(c) expand the resulting product of powers of polynomials of λ and µ using the symbolic

binomial theorem for positive integer n;
(d) coalesce the product of exponentials;
(e) expand the integrand into terms of the form (17) by converting a 6-fold product of sums

into a 6-deep nest of sums
(
∑

[· · ·]) × (
∑

[· · ·]) × · · · × (
∑

[· · ·]) −→
∑

[
∑

[· · ·
∑

[· · ·]]]]]];
(f) expand the argument of the exponential;
(g) collect the coefficients of λ and µ in the exponential

3. commute the triple integral with the nest of sum∫ ∫ ∫ ∑
[
∑

[· · ·
∑

[· · ·]]]]]] dλdµdφ −→
∑

[
∑

[· · ·
∑

[
∫ ∫ ∫

· · · dλdµdφ]]]]]];
4. distribute the integration over the terms of form (18);
5. factor each 3-dimensional integral into separate one- dimensional integrals;
6. replace these using (19)– (21) given in Algorithm II.

The application of Algorithm III to the definition (1) gives a a general formula for the J s that
satisfy the constraints (2). Hence

Algorithm IV:
1. set some or all of the indexes that characterize a J integral to explicit values;

274 M.P. Barnett / Journal of Symbolic Computation 42 (2007) 265–289

2. apply the general formula from Algorithm III;
3. simplify the result.

Hence closed formulas for J s with some or all of the indexes set to explicit integers.

5. An inductive proof

The integrals over λ and µ are very close to the incomplete gamma function that is discussed
in standard texts on mathematics for physics and engineering, and in Abramowitz and Stegun
(1964), Gradshteyn and Ryzhik (1979) and other reference works. When k = 1, the integral
(19) is called Γ (n + 1, a). The closed formula is given in Gradshteyn and Ryzhik (1979) as
entry 8.352(2). This leads trivially to the integral containing arbitrary k. The inductive proof of
this result introduces several key elements of MATHSCAPE. Also, it is a prototype of scores of
inductive proofs that I have coded over the past 15 years.

I write the generalization of (19) by:∫
∞

x=a
xne−kx dx =

e−ak

kn+1

n∑
`=0

[
n!(ak)`

`!

]
(22)

and represent this by:

eqn[incompleteGamma, closed] =
integral[x, a, infinity][x^n exp[-k x]] ==
exp[-a k]/k^(n+1) sum[ell, 0, n][n! (a k)^ell/ell!]

A referee suggested that I show the MATHEMATICA and MAPLE reductions of these.
MATHEMATICA gives:

Γ (n+1)
kn +

an(Γ (n+1,ka)−nΓ (n))
(ka)n

k
if Re(k) > 0. (23)

I can force this by asserting Re(k) > 0, and simplify using nΓ (n) = Γ (n + 1) when a = 1,
but this simply tells me that I am dealing with the incomplete Γ function, which I knew already.
MAPLE GIVES

−
π csc(nπ)

kn+1 + Γ (−n)
−

k
1

2n

n + 1
exp

(
−

1
2k

)
M 1

2n , 1
2n+1 +

1
2
(k) (24)

where M is the Whittaker M function, which does not help, either.
The basis of the induction is established by:

integrateAssumptions = Re[k] > 0

check[basis, gammaIncomplete] =
eqn[incompleteGamma, closed] //
pipe[

(* 1 *) toBothSides[n -> 0],
(* 2 *) toTheLhs[useIntegrate],
(* 3 *) toTheRhs[fullExpand]]

The successive lines of this pipe expression act on the representation of (22) as follows:
1 specializes the integral to the case n = 0.
2 evaluates the right hand side by converting it to

M.P. Barnett / Journal of Symbolic Computation 42 (2007) 265–289 275

Integrate[E^(-k x),{x,a,Infinity},Assumptions->Re[k]>0]

which MATHEMATICA reduces automatically to e−ak/k.

3 evaluates the right hand side by converting the sum to the explicit value 1.

These actions convert both sides of the Equal expression to exp[-k a]/k, and the statement
collapses to True.

The induction is extended by the following statement.

check[gammaIncomplete] = eqn[incompleteGamma, closed] // pipe[
(* 1 *) toTheRhs[moveCoefficientRight],
(* 2 *) toBothSides[D$[k]],
(* 3 *) toTheLhs[
(* 4 *) grule[commuteD$integral],
(* 5 *) useElementary, useD$, disuseElementary ,
(* 6 *) toTheIntegral[moveCoefficientLeft]],
(* 7 *) toTheRhs[
(* 8 *) grule[commuteD$sum],
(* 9 *) PowerExpand,
(* 10 *) useElementary, useD$, disuseElementary,
(* 11 *) toTheSum[Distribute],
(* 12 *) toSum[containing[k^(ell-n-1)]][reindex[ell, ell+1]],
(* 13 *) toSum[containing[ell!]][leftExpand],
(* 14 *) toSum[containing[ell!]][rightExtend],
(* 15 *) joinTheSummands,
(* 16 *) toEach[n!][grule[factorialUp]], Simplify,
(* 17 *) toEach[(ell-1)!][grule[factorialUp]], Simplify,
(* 18 *) toTheSum[leftExtend]
(* 19 *)],
(* 20 *) toTheLhs[
(* 21 *) grule[incompleteGamma, closed],
(* 22 *) moveCoefficientRight,
(* 23 *) PowerExpand]]

The successive lines of this pipe expression act on the representation of (22) as follows:

1 changes the right hand side to
n∑

`=0

e−ak

kn+1

[
n!(ak)`

`!

]
. (25)

2 prepends the operator ∂/∂k represented by D$[k] to both sides of the equation but does not
perform the differentiation.

3 focuses on the left hand side.

4 commutes ∂/∂k
∫

x (· · ·) dx to
∫

x ∂(· · ·)/∂k dx .

5 uses MATHEMATICA differentiation on the left hand side, converting it to∫
∞

x=a

[
− xn+1e−kx] dx . (26)

6 moves the constant, i.e. −1, out of the integral. Hence

−

∫
∞

x=a

[
xn+1e−kx] dx . (27)

276 M.P. Barnett / Journal of Symbolic Computation 42 (2007) 265–289

7 focuses attention on the right hand side.

8–11 convert the right hand side, in succession, to
n∑

`=0

∂

∂k

[
n!(ka)`e−ka

`!kn+1

]
, (28)

n∑
`=0

∂

∂k

[
n!a`e−ka

`!kn−`+1

]
, (29)

n∑
`=0

[
−

n!a`+1e−ka

`!kn−`+1 +
(` − n − 1)n!a`e−ka

`!kn−`+2

]
, (30)

n∑
`=0

[
−

n!a`+1e−ka

`!kn−`+1

]
+

n∑
`=0

[
(` − n − 1)n!a`e−ka

`!kn−`+2

]
. (31)

12 converts the first term to
n+1∑
`=1

[
−

n!a`e−ka

(` − 1)!kn−`+2

]
. (32)

13–14 convert the second term in succession to

(−n − 1)n!e−ka

kn+2 +

n∑
`=1

[
−

(` − n − 1)n!a`e−ka

`!kn−`+2

]
, (33)

(−n − 1)n!e−ka

kn+2 +

n+1∑
`=1

[
−

(` − n − 1)n!a`e−ka

`!kn−`+2

]
. (34)

The term that is subtracted to compensate for the right extension of the sum in the last of these
steps is identically zero because of the factor ` − n − 1.

15–19 use grule[factorialUp] = n_!:>(n+1)!/(n+1) and several functions described in
Section 3 to convert the right hand side in succession to

(−n − 1)n!e−ka

kn+2 +

n+1∑
`=1

[
−

n!a`e−ka

(` − 1)!kn−`+2 +
(` − n − 1)n!a`e−ka

`!kn−`+2

]
, (35)

−
(n + 1)!e−ka

kn+2 +

n+1∑
`=1

− ((n − ` + 1)(` − 1)! + `!) (n + 1)!a`e−ka

(n + 1)(` − 1)!`!kn−`+2 , (36)

−
(n + 1)!e−ka

kn+2 +

n+1∑
`=1

−(n + 1)!a`e−ka

`!kn−`+2 , (37)

n+1∑
`=0

−(n + 1)!a`e−ka

`!kn−`+2 . (38)

20 focuses attention on the left hand side.

21–22 convert the left hand side in succession to

−
e−ka

kn+2

n+1∑
`=0

[
−

(n + 1)!(ka)`

`!

]
, (39)

M.P. Barnett / Journal of Symbolic Computation 42 (2007) 265–289 277

n+1∑
`=0

[
−

(n + 1)!(ka)`e−ka

`!kn+2

]
. (40)

23 converts the left hand side to an expression that is identical to (38) and the system reduces the
entire Equal expression to True.

The formulas for the integrals over λ and µ that are used in the algorithms of Section 4 are
formed by:

eqn[lambdaIntegral] =
eqn[incompleteGamma, closed] /. a-> 1

eqn[muIntegral] =
eqn[incompleteGamma, closed] //
pipe[
toBothSides[a -> -1],
toTheLhs[splitTheRange[1]],
transposeFromLhsTerm[2],
toTheRhs[
grule[incompleteGamma, closed],
Factor,
toThePlusContaining[exp][
toEachTerm[moveCoefficientRight],
joinTheSummands,
toTheSummand[
PowerExpand,
Factor,
toThePlus[factorOut[-1]], ReleaseHold]]]]

Hence:

eqn[lambdaIntegral] =
integral[x, 1, infinity][x^n*exp[-k x]] ==
exp[-k]/k^(n+1) sum[ell, 0, n][n! k^ell/ell!]

eqn[muIntegral] =
integral[x, -1, 1][x^n exp[-k x]] ==
1/k^(n+1) sum[ell, 0, n][n! k^ell ((-1)^ell exp[k] - exp[-k])/ell!]

The pipe expression that extends the induction contains two toTheRhs subexpressions
separated by a toTheLhs subexpression. Because actions that are targeted on the left hand side
cannot affect the right hand side, the separated expressions can be coalesced. The situation is
recognized and streamlined mechanically by:

oldExtension =
betwobj["check[gammaIncomplete]", "eqn[incompleteGamma, closed]"]

newExtension = oldExtension /.
pipe[$1___?(Head[(Not[MatchQ[#, toTheRhs[___]]]&),

$2_toTheRhs, $3_toTheLhs, $4_toTheRhs, $5___] :>
pipe[$1, $3, hold[$2, $4], $5] /.
hold[toTheRhs[$6___], toTheRhs[$7___]] :> toTheRhs[$6, $7]

The betwobj retrieves the operator from the history of the current run, using
InString/@Range[$Line]. The pattern transformations are standard MATHEMATICA coding.
These statements provide a further illustration of the benefit of having the repertoire of
MATHEMATICA resources to invoke.

278 M.P. Barnett / Journal of Symbolic Computation 42 (2007) 265–289

6. Constructing the general formulas

6.1. Constructing a prototype

To construct a closed formula for (1), I omit sines and cosines of θa and θb from the integrand,
use the following MATHSCAPE statements to construct the formula for this special case, and then
generalize.

op[Jnaf] =
pipe[
(* 1 *) ma -> 0, mb -> 0, ella -> 0, ellb -> 0,
(* 2 *) toTheRhs[
(* 3 *) brule /@ {raToElliptic, rbToElliptic},
(* 4 *) grule[volumeIntegral, elliptic],
(* 5 *) useElementary, PowerExpand, disuseElementary,
(* 6 *) toTheArgumentOfTheExp[
(* 7 *) collect[lambda, mu],
(* 8 *) to[Plus][innermost][Factor]],
(* 9 *) gruleReverse[expProd],
(* 10 *) grule[binomialExpansion],
(* 11 *) toSum[1, containing[i]][i->i1],
(* 12 *) toSum[1, containing[i]][i->i2],
(* 13 *) to[_ sum[__][_]][1][moveCoefficientRight],
(* 14 *) to[_ sum[__][_]][1][moveCoefficientRight],
(* 15 *) toSums[{1,2}][expandAndDistribute],
(* 16 *) toIntegrals[{1,2,3}][expandAndDistribute],
(* 17 *) replaceRepeated[grule[commuteIntegralSum]],
(* 18 *) toThePlus[
(* 19 *) toEachTerm[
(* 20 *) toIntegrals[{1,2,3}][moveCoefficientLeft],
(* 21 *) toIntegral[containing[mu]][
(* 22 *) PowerExpand, moveCoefficientLeft],
(* 23 *) toTheArgumentOfEachExp[
(* 24 *) divideAndMultiplyBy[-1],
(* 25 *) collectivelyToFactors[
(* 26 *) notContainingAny[HoldForm, lambda, mu]][Hold],
(* 27 *) HoldForm -> Identity
(* 28 *)],
(* 29 *) grule[lambdaIntegral],
(* 30 *) grule[muIntegral],
(* 31 *) toIntegral[containing[phi]][useIntegrate],
(* 32 *) Hold -> Identity
(* 33 *)],
(* 34 *) replaceRepeated[grule[joinTheSummands]]],
(* 35 *) toSum[innermost][expandAndDistribute],
(* 36 *) toSummand[2][Expand],
(* 37 *) toSum[innermost][moveCoefficientLeft],

M.P. Barnett / Journal of Symbolic Computation 42 (2007) 265–289 279

(* 38 *) toSummand[2][
(* 39 *) grule[expProd],
(* 40 *) toEachExp[Simplify],
(* 41 *) collectByArguments[exp]],
(* 42 *) toSum[{1, 2}][Distribute],
(* 43 *) toEachSummand[Factor],
(* 44 *) toEach[sum[i2,__][_]][moveCoefficientLeft],
(* 45 *) toEach[sum[i1,__][_]][moveCoefficientLeft],
(* 46 *) Factor]]

eqn[Jnaf] = eqn[Jdefn] // op[Jnaf]

Hence the result of the form:

Jna ,0,0,nb,0,0 =
4na !nb!πρna+nb−1

(α − β)3(α + β)3 ×

[
Z (α)e−αρ

+ Z (β)e−βρ
]

(41)

where

Z (α)
= −

na∑
i1=0

nb∑
i2=0

[
(−1)nb−i2(Z (α)

1 + Z (α)
2 + · · · + Z (α)

6)

÷

(
i1!(na − i1)!i2!(nb − i2)! ((α − β)ρ)na+nb−i1−i2 ((α + β)ρ)i1+i2

)]
(42)

Z (α)
1 = (2 + i1 + i2)!(na + nb − i1 − i2)!α

2

×

(
i1+i2+2∑

`=0

((α + β)ρ)`

2``!

)
×

(
na+nb−i1−i2∑

`=0

((α − β)ρ)`

2``!

)
, (43)

with similar expressions for Z (α)
j , j = 2, . . . , 6, and corresponding results for the coefficient

of e−βρ . The successive lines of the pipe expression act as follows (bold face symbols are
surrogates):

1 specializes (1) to

Jna ,0,0,nb,0,0 =

∫
R3

rna
a rnb

b e−αra e−βrb dV . (44)

2 focuses on the right hand side.

3–4 convert this in turn to expressions of forms (45) and (46), where p(λ, µ) stands for a
polynomial in (λ, µ) and a stands for ρ3/8.∫

R3
p(λ, µ)e−β(λ−µ)ρ/2e−α(λ+µ)ρ/2 dV, (45)

a
∫

λ

∫
µ

∫
φ

(λ2
− µ2)p(λ, µ)e−β(λ−µ)ρ/2e−α(λ+µ)ρ/2 dλ dµ dφ. (46)

5, 6–8 and then 9 convert the product of exponentials in succession to the following forms.

e−β(λ−µ)ρ/2−α(λ+µ)ρ/2, e−(α+β)ρλ/2−(α−β)ρµ/2, e−(α+β)ρλ/2e−(α−β)ρµ/2. (47)

280 M.P. Barnett / Journal of Symbolic Computation 42 (2007) 265–289

10–12 convert the right hand side to the following form, where b stands for ρna+nb/2na+nb ,
the exponential factors are unchanged, and si1(λ), ti2(µ) stand for the terms in the binomial
expansions of the (λ, µ) expressions for rna

a and rnb
b .

a
∫

λ

∫
µ

∫
φ

b × (λ2
− µ2) × e(...)e(...)

(
na∑

i1=0

si1(λ)

)(
nb∑

i2=0

ti2(µ)

)
dλ dµ dφ. (48)

13–15 rearrange the integrand to the forms (49)–(51) in succession. The product b si1(λ) is
restructured automatically to the form b′ s′

i1
(λ), where every factor of si1(λ) depends on λ and b′

is free of λ. Then the product b′ ti2(µ) is restructured automatically to the form b′′ t′i2
(µ), where

every factor of ti2(µ) depends on µ and b′′ is free of λ and µ. The product λ2s′

i1
(λ) coalesces to

a Times that is written s′′

i1
(λ) here.(

na∑
i1=0

b′
× (λ2

− µ2)e(...)e(...)s′

i1
(λ)

)(
nb∑

i2=0

ti2(µ)

)
, (49)

na∑
i1=0

nb∑
i2=0

[
b′′

× (λ2
− µ2)e(...)e(...)s′

i1
(λ)t′i2

(µ)
]
, (50)

na∑
i1=0

nb∑
i2=0

[
b′′

×

(
e(...)e(...)s′′

i1
(λ)ti2(µ)

)
+ . . .

]
. (51)

16–17 convert the triple integral to expressions of the following forms, in turn, where the . . . in
each + stand for a second term with −µ2 in place of λ2.∫

λ

∫
µ

∫
φ

na∑
i1=0

nb∑
i2=0

b′′e(...)e(...)s′′

i1
(λ)t′i2

(µ)dλ dµ dφ +

∫
λ

. . . dφ, (52)

na∑
i1=0

nb∑
i2=0

∫
λ

∫
µ

∫
φ

b′′e(...)e(...)s′′

i1
(λ)t′i2

(µ)dλ dµ dφ +

na∑
i1=0

. . . dφ. (53)

18–28 act as follows on the Plus. (Targeting the entire right hand side was sufficiently focused
for the preceding operations.) In particular,

18 focuses on the Plus.

19 makes lines 20–33 act in parallel on both terms.

20 converts the entire right hand side to the form

a

[
na∑

i1=0

nb∑
i2=0

b′′
×

(∫
∞

λ=1
λi1+i2+2e−(α+β)ρλ/2dλ

)

×

(∫ 1

µ=−1
(−µ)nb−i2µna−i1 e−(α−β)ρλ/2dµ

)
×

(∫ 2π

φ=0
dφ

)
+ . . .

]
. (54)

21–22 convert
∫
µ
(−µ)nb−i2µna−i1 . . . dµ to (−1)nb−i2

∫
µ

µna+nb−i1−i2 . . . dµ.

23–28 convert the exponentials to e−Hold[(α+β)ρ/2]λ and e−Hold[(α−β)ρ/2]µ using P5(4, 6), P20 to
force the arguments of the exponentials into the form matched by -(a_)*lambda and -(a_)*mu.
Knowledge of the MATHEMATICA representations was needed to write this piece of code, but

M.P. Barnett / Journal of Symbolic Computation 42 (2007) 265–289 281

this need is not a reflection on MATHEMATICA — the exigencies of symbolic calculation require
canonical representations of expressions that have to be used in different forms.

29–32 change the right hand side to the form

a

[
na∑

i1=0

nb∑
i2=0

u1 +

na∑
i1=0

nb∑
i2=0

u2

]
, (55)

where the factors of u1 include
1. a sum over ` containing e−(α+β)ρ/2 as a factor of the summand, and
2. another sum over ` containing e−(α−β)ρ/2

+ (−1)`e(α−β)ρ/2 as a factor of its summand.

The factors of u2 fit this pattern, too.

33 ends the scope of the toEachTerm in 19.

34 converts the right hand side to the form

a
na∑

i1=0

[
nb∑

i2=0

u1 +

nb∑
i2=0

u2

]
, (56)

and then to the form

a
na∑

i1=0

nb∑
i2=0

u, (57)

where u = u1 + u2. The addition shortens the expression by 30% due to mutual annihilation of
terms of identical magnitude and opposite sign.

35 converts each sum over ` that results from the µ integration to the Plus of two sums.

36 expands u into the following form, where c` and d` stand for algebraic expressions in
(na, nb, i1, i2, `).[∑

`

c`e−(α+β)ρ/2

]
×

[∑
`

(
−d`e−(α−β)ρ/2

)]
+[∑

`

c`e−(α+β)ρ/2

]
×

[∑
`

(
(−1)`d`e(α−β)ρ/2

)]
. (58)

37 converts the first term to the form[∑
`

−c`e−(α+β)ρ/2e−(α−β)ρ/2

]
×

[∑
`

d`

]
, (59)

and converts the second term to the corresponding form with e(α−β)ρ/2 as the second exponential
factor.

38–41 combine the exponentials, reducing the right hand side to the following form where v1
and v2 are polynomial in α, β, ρ.

a
na∑

i1=0

nb∑
i2=0

[
v1e−βρ

− v2e−αρ
]
. (60)

42–46 convert this in succession to

282 M.P. Barnett / Journal of Symbolic Computation 42 (2007) 265–289

a
na∑

i1=0

[
nb∑

i2=0

(
v1e−βρ

)
−

nb∑
i2=0

(
v2e−αρ

)]
, (61)

a ×

[
we−βρ

na∑
i1=0

nb∑
i2=0

v′

1 − we−αρ
na∑

i1=0

nb∑
i2=0

v′

2

]
, (62)

g ×

[
e−βρ

na∑
i1=0

nb∑
i2=0

v′

1 − e−αρ
na∑

i1=0

nb∑
i2=0

v′

2

]
. (63)

where v′

1 and v′

2 are polynomial in α, β, ρ and g is algebraic in (na, nb, α, β, ρ). Note the right
to left action of the Distribute functions in line 42, in accordance with the targeting principle
P5(3) in Section 3.

I constructed the pipe expression interactively. At each stage of the development, I inspected
the heads and lengths and short forms of pieces of the most recent intermediate result, using some
further MATHSCAPE tools, and went on to the next step without bothering to record the details
that I had found. Often, the inspection of one step was helped by scrolling back to see how I
had analyzed the previous step. The entire process went quite rapidly. Writing the explanation,
with surrogates for subexpressions, was far more arduous and time consuming than developing
the statement. Several MATHSCAPE functions help the analysis of scripts. For example, the
cumulative effects of op[Jnaf] through line (* 42 *) is shown by

eqn[Jdefn] //
(op[Jnaf] // toThe[toTheRhs][toArguments[Range[-4, -1]][_->Identity]])

Note that in this expression, toTheRhs is the head of a piece of an operator that refers to the
right hand side of an operand — the operator itself does not contain a right hand side.

6.2. Exploring the prototype

The byte count of the MATHEMATICA form of the explicit formula for Jna ,0,0,nb,0,0 is 18,968.
It is particularized to J0,0,0,0,0,0 by

eqn[fromJnaf[0,0]] =
eqn[Jnaf] //
pipe[
na->0, nb->0, toEachSum[fullExpand]^2, toTheRhs[Simplify]]

Hence:

J0,0,0,0,0,0 =
8π

(α2 − β2)3ρ

[
β(4α +α2ρ −β2ρ)e−αρ

+ α(−4β + α2ρ − β2ρ)e−βρ
]
.

(64)

For consistency with the existing literature, define X and transpose to equations for α2 and β2 by

eqn[J, X] = X == alpha^2-beta^2;
eqn[alphaSqd] = eqn[J, X] // solveLinear[alpha^2];
eqn[betaSqd] = eqn[J, X] // solveLinear[beta^2];
eqn[J[0,0]] =
eqn[fromJnaf[0,0]] //
toTheRhs[
brule[alphaSqd], Simplify,
to[Plus][containing[-4], innermost][factorOut[-1]],

ReleaseHold]

M.P. Barnett / Journal of Symbolic Computation 42 (2007) 265–289 283

This reduces the integral to

8π

ρX3

[
β(4α + ρX)e−αρ

− α(4β − ρX)e−βρ
]

(65)

in agreement with the result in Coulson (1942). This final reduction that enables visual
comparison with published formulas prompted the initial development of targeting functions.
Several of Coulson’s colleagues and students contributed to Coulson (1942), and their styles
of simplification differed slightly. To convert the direct results of an algorithm (that, by its
nature, is systematic) to the published formulas I had to throw the emphasis onto powers of
α in some subexpressions and onto powers of β in other subexpressions without a consistent
pattern. Targeting functions grew out of clichés to facilitate the necessary transformations.

Eqs. (41)–(43) are formed via the unconventional expression corresponding to (63) with[
(Z (α)

= · · ·) × e−αρ) + (Z (β)
= · · ·) × e−βρ)

]
in place of the bracketed Plus, where the

· · · stand for the two coefficient expressions. The embedded equations are extracted by the
MATHSCAPE instancesOf function that wraps MATHEMATICA Cases. Then the pieces of Z (α)

and Z (β) are formed via similar smaller embedded equations. The actual MATHSCAPE statements
that extract Z (α) and its pieces are

Thread[
set[
eqn[Jnaf, #]& /@ {Za, Zb},
eqn[Jnaf][[2]] //
pipe[
toTheCoefficientOf[exp[-alpha rho]][Za==#&],
toTheCoefficientOf[exp[-beta rho]][Zb==#&],
instancesOf[lhs_==rhs_]]]] /. set -> Set;

eqn[Jnaf, toZs] = eqn[Jnaf] /. (bruleReverse[Jnaf, #]& /@ {Za,Zb})

eqn[Jnaf, Zaa] =
eqn[Jnaf, Za][[2]] //
pipe[
toSummand[2][
toFactor[containing[sum]][
numberTheTerms,
term[n_][v_] :> Zaa[n] == v]],
instancesOf[lhs_ == rhs_]];

eqn[Jnaf, ZaFromZaa] =
eqn[Jnaf, Za] /. bruleReverse[Jnaf, Zaa]

6.3. The generalization

The general formula for any (na, ma, `a, nb, mb, `b) consistent with (2) is constructed by

eqn[forJ, ells] = ellav == (ella + ellb)/2

op[Jclosed] =
toTheRhs[
(* 3x *) brule /@

{cosAtoElliptic, cosBtoElliptic, sinAtoElliptic,
sinBtoElliptic, raToElliptic, rbToElliptic},

(* 4 *) grule[volumeIntegral, elliptic],

284 M.P. Barnett / Journal of Symbolic Computation 42 (2007) 265–289

(* 5 *) useElementary, PowerExpand, disuseElementary,
(* 5x *) brule[forJ, ells],
(* 6 *) toTheArgumentOfTheExp[
...
(* 10 *) grule[binomialExpansion],
(* 11x *) toSum[1, containing[i]][i->i[#]]& /@ Range[6],
(* 12x *) to[_ sum[__][_]][1][moveCoefficientRight] ^6,
(* 15x *) toSums[Range[6]][expandAndDistribute],
(* 16 *) toIntegrals[{1,2,3}][expandAndDistribute],
...
(* 35 *) toSum[innermost][expandAndDistribute],
(* 36x *) toSummand[6][Expand],
(* 37 *) toSum[innermost][moveCoefficientLeft],
(* 38x *) toSummand[6][
(* 39 *) grule[expProd],
(* 40 *) toEachExp[Simplify],
(* 41 *) collectByArguments[exp],
(* 42x *) toTheCoefficientOfEach[exp][hold]],
(* 42y *) toSum[Range[6]][Distribute],
(* 42z *) hold -> Identity,
(* 43 *) toEachSummand[Factor],
(* 45x *) toEach[sum[i[#],__][_]][

moveCoefficientLeft]& /@ Reverse[Range[6]],
(* 46 *) Factor,
(* 47x *) brule[forJ, ells]];

eqn[Jclosed] = eqn[Jdefn] // op[Jclosed]

Lines 4, 5, 6–10, 16–35, 37, 39–41, 43 and 46 are kept unchanged from the prototype. The
indexes i1 and i2 have been changed to i[1] and i[2], to allow indexed names up to i[6]for
the summation indexes. Line 3x extends line 3 in op[Jnaf] to allow for sines and cosines. Lines
5x and 47x allow for the presence of ellav. Lines 11x, 12x, 15x, 36x, 38x, 42y and 45x allow for
six binomial expansion indexes. Lines 42x and 42z protect the result of collecting the coefficients
of the exponentials from the distribution of summation. Line 45x moves the minus sign from the
summand over i[6] outward, to annihilate a minus sign at the start of the overall expression.
This is done to give a final result that collapses to the prototype when ma = `a = mb = `b = 0.
The byte count of the general formula is 62,160. The overall structure of the general formula is
similar to (42) with a six-fold instead of two-fold sum and six Z (α) coefficients again.

The general formula for the case α = β is produced by a simple adaptation of op[Jclosed].

6.4. Checking

Several identities connect the J integrals. The symmetry of (1) is expressed by

Jna ,ma ,`a ,nb,mb,`b (α, β, ρ) = Jnb,mb,`b,na ,ma ,`a (β, α, ρ). (66)

Differentiation with respect to α and β raise the power of ra and rb, respectively, in the
integrand.

∂

∂α
Jna ,ma ,`a ,nb,mb,`b (α, β, ρ) = −Jna+1,ma ,`a ,nb,mb,`b (α, β, ρ), (67)

∂

∂β
Jna ,ma ,`a ,nb,mb,`b (α, β, ρ) = −Jna ,ma ,`a ,nb+1,mb,`b (α, β, ρ). (68)

M.P. Barnett / Journal of Symbolic Computation 42 (2007) 265–289 285

The limit when ρ goes to zero is a one-center integral. The (ra, θa, φ) and (rb, θb, φ) coordinate
systems coalesce. Drop the subscripts. Then the limit factors into elementary integrals that the
built-in Integrate of MATHEMATICA evaluates.

lim
ρ−>0

Jna ,ma ,`a ,nb,mb,`b (α, β, ρ)

=

∫
∞

r=0
rna+nb+2e−(α+β)r dr

∫ π

θ=0
cosma+mb θ sin`a+`b+1 θ dθ

∫ 2π

φ=0
dφ. (69)

The identity cos2 θ + sin2 θ = 1 gives two more identities between the J s.

Jna+2,ma ,`a ,nb,mb,`b (α, β, ρ)

= Jna+2,ma+2,`a ,nb,mb,`b (α, β, ρ) + Jna+2,ma ,`a+2,nb,mb,`b (α, β, ρ), (70)
Jna ,ma ,`a ,nb+2,mb,`b (α, β, ρ)

= Jna ,ma ,`a ,nb+2,mb+2,`b (α, β, ρ) + Jna ,ma ,`a ,nb+2,mb,`b+2(α, β, ρ). (71)

Elementary trigonometry also gives ra cos θa + rb cos θb = ρ and ra sin θa = rb sin θb. Hence

Jna ,ma ,`a ,nb+1,mb+1,`b (α, β, ρ)

= ρ Jna ,ma ,`a ,nb,mb,`b (α, β, ρ) − Jna+1,ma+1,`a ,nb,mb,`b (α, β, ρ), (72)
Jna ,ma ,`a ,nb+1,mb,`b+1(α, β, ρ) = Jna+1,ma ,`a+1,nb,mb,`b (α, β, ρ). (73)

In principle, replacing the J s in all of these identities by the general formula gives an expression
that can be reduced to True. This is challenging. For present purposes, I show plausibility by
evaluating the identities for a succession of J s with explicit indexes. The following function
opens up the nested sums:

vJ[na$_, ma$_, ella$_, nb$_, mb$_, ellb$_] :=
(eqn[Jdefn] // op[Jclosed]) //
pipe[
na->na$, ma->ma$, ella->ella$, nb->nb$, mb->mb$, ellb->ellb$,
toSum[outermost][fullExpand]^8];

Then, typically, the following function applies the symmetry test.

symmetryTest[na$_, ma$_, ella$_, nb$_, mb$_, ellb$_] :=
((vJ[na$, ma$, ella$, nb$, mb$, ellb$][[2]] -
(vJ[nb$, mb$, ellb$, na$, ma$, ella$] [[2]] /.
{alpha->beta, beta->alpha})) // Simplify) === 0

The statement

(Table[symmetryTest[na, ma, ella, nb, mb, ellb],
{na, 0, nhat}, {ma, 0, na}, {ella, 0, na-ma},
{nb, 0, na}, {mb, 0, nb}, {ellb, 0, nb-mb}] //
Flatten) /. List -> Plus

evaluates the test for all distinct J s with na ≤ n̂ and returns n̄×True, where n̄ is the number of
integrals that are tested.

The most exacting test of the general formula has been its use to compute large numbers of
overlap integrals that match the results of my earlier work.

286 M.P. Barnett / Journal of Symbolic Computation 42 (2007) 265–289

7. Molecular integrals

Most of my work using MATHSCAPE has dealt with the molecular integrals of computational
chemistry. The overlap integrals (which are closely related to the J s) and the other kinds of
molecular and atomic integral are used in work on electronic structure that starts from the
Schrödinger equation. The integrals comprise the elements of massive matrices that are fed into
eigenvalue software. These ‘ab initio’ calculations usually approximate the ‘wave functions’
(eigenfunctions) by sums of products of ‘atomic orbitals’. Each of these is a function of the
coordinates of an electron relative to an atomic nucleus. The nuclei are considered to be
at rest, relative to the movement of the electrons (Born–Oppenheimer approximation). The
best approximation for a given number of terms uses Slater orbitals, also called E(lectronic)
T(ype) O(rbital)s, that comprise a complete orthogonal set enumerated by the quantum numbers
(n, `, m)√

22n−δm k2n+1(2` + 1)(` − m)!

(2n)!π(` + m)!
rn−1e−kr Pm

` (cos ϑ)

{
cos
sin

}
(mϕ) (74)

where δm is the Kronecker delta (1 when m = 0 and 0 otherwise). The quantum numbers are
integers that satisfy the constraints n ≥ 1, 0 ≤ ` ≤ n, 0 ≤ m ≤ `. Pm

` is the associated
Legendre polynomial. The solid spherical harmonic r` Pm

` (cos θ){cos | sin}(mφ) is a product of
non-negative powers of (x, y, z) with total exponent `. The overlap integral is a measure of the
spatial overlap of two orbitals of a single electron∫

R3
1

Ψ(A, 1, q1)Ψ(B, 1, q2) dV1 (75)

where Ψ(X, i, q) denotes an atomic orbital of electron i associated with nucleus X , with triple
quantum number q . R3

i is the Euclidean space of electron i and dVi is its space element.
The distance between electrons i and j is written ri j and the potential energy function in

the Schrödinger equation contains a term 1/ri j for every pair of electrons in the model. Hence
integrals of the form:∫

R3
1

∫
R3

2

Ψ(A, 1, q1)Ψ(B, 1, q2)
1

r12
Ψ(C, 2, q3)Ψ(D, 2, q4) dV1dV2. (76)

Denote the association of electrons and nuclei in (76) by (abcd). The main kinds of two-electron
integral are Coulomb (aabb), hybrid (aaab), exchange (abab), 3-centre Coulomb (aabc), 3-
centre exchange (abac) and 4-centre (abcd).

As mentioned earlier in this paper, I worked on the problem of molecular integrals from
1948 until the mid 1960s. I resumed the work in about 1990 at the suggestion of two members of
Leland Allen’s group who used the John von Neuman National Supercomputer Laboratory where
I spent part of my time as a Visiting Scientist, developing some models of biological information
processing. I found a way to circumvent a convergence problem in certain 3-centre integrals
(Barnett, 1989, 1990, 1991) that other authors had found in the 1970s. Then, as a Visiting
Research Collaborator in the Allen group at Princeton University, I developed new formulas
for the auxiliary functions needed to compute overlap, (aabb) and (aaab) integrals (Barnett,
2000a). I developed efficient computational procedures for the (aabb) and (aaab) integrals, and
constructed a table of closed formulas for a considerable number of these Barnett (2000b). Then
I constructed a table of formulas for nearly 10,000 overlap integrals (Barnett, 2003b) and found

M.P. Barnett / Journal of Symbolic Computation 42 (2007) 265–289 287

significant errors in work of some other authors for further overlap integrals with very high
quantum numbers (Barnett, 2002). I developed a method for transforming surface harmonics and
constructed an extensive table of the relevant coefficients (Barnett, 2003a). A key stage in the
reduction of the (abab) and (abac) was resolved (Barnett, 1998b). All this work used the so-
called molecular ζ -function method (Barnett and Coulson, 1951; Barnett, 1963). It is dominated
by special functions of mathematical physics and manipulation of surface harmonics. Related
work on electronic structure of small atoms and molecules includes (Barnett et al., 2001; Barnett
and Capitani, 2006a,b). Mechanized optimization is discussed in Barnett (2003b).

Whilst work on integrals over Slater orbitals is a necessary and ongoing topic of research,
mention must be made that the overwhelming body of electronic structure calculations use
Gaussian wave functions that contain exp(−kr2) instead of exp(−kr) to simplify the evaluation
of the multi-centre integrals.

8. Discussion

An account of MATHSCAPE that discusses its application to the proof of mathematical
formulas must take note of THEOREMA and other systems that perform proofs in more
highly automated ways. The website (Theorema publications, 2004) maintains a current
list of publications of the THEOREMA group of Bruno Buchberger at the University of
Linz. These report work on automatic theorem proving in Zermelo–Frankel set theory,
predicate logic, computational origami, merge sorting and Buchberger’s algorithm. The
main link to the pedagogic examples presented at ISSAC 2002 http://www.risc.uni-
linz.ac.at/research/theorema/software/demos/issac) leads to further work of a similar nature.
Given the power of THEOREMA and the level of interest that it engenders, there is a need
to connect it to the concerns of natural scientists who use symbolic calculation. The work
(Windsteiger, 2003) on the Neville polynomial interpolation algorithm provides the beginning of
a bridge. Engaging natural scientists in accounts of this kind of material would be very beneficial.

Although the proof in Section 5 is directed very tightly by the user, the mechanized use of
analogy in MATHSCAPE proofs that is illustrated in Section 6 and in some material accessible
on the web (Barnett, 2005a) does bring MATHSCAPE applications a little towards the field of
automated theorem proving — and interactivity does feature in the title of the THEOREMA work
(Piroi and Kutsia, 2005). My MATHSCAPE work overlaps several projects that have links in the
‘Automated deduction systems and groups’ and ‘Strategies in automatic deduction’ websites
(Automated deduction systems and groups, 2003; Systems incorporating flexible strategy-based
reasoning, 2004). High level mnemonics feature in PROVERB (The PROVERB project, 2000) as
well as THEOREMA and MATHSCAPE. My efforts to build a body of material concerning special
functions of mathematical physics is in the spirit of MKM (Adams and Davenport, 2004).

Most mathematical discourse in the natural sciences is dominated by the use of equations
and identities. Discourse in algebra, geometry and logic, however, is dominated by predicates
and assertions and rules of inference. I have started to explore extensions of MATHSCAPE to
deal with these (Barnett, 2005a). I find the analysis of proof methods by Pölya (Pólya, 1954)
extremely helpful.

A major recent development in the THEOREMA project has been the introduction of
logicographic symbols that depict mathematical entities and concepts graphically (Buchberger,
2001). An anonymous referee has suggested that I incorporate this tactic in future developments
of MATHSCAPE. I do use one graphical tactic already — a ‘topological’ description of the
computational path to recurrence formulas for sets of integrals characterized by two integer

288 M.P. Barnett / Journal of Symbolic Computation 42 (2007) 265–289

indexes (Barnett, 2003c). A possibility that comes to mind immediately is to use (nested)
rectangles around a summand to indicate (multiple) summation. Then:

x1 + x2 −→ x1 + x2

depicts∑∑
(x1 + x2) −→

∑(∑
x1 +

∑
x2

)
.

This convention can be extended to a variety of operations on sums, integrals and other
functionals, using different line styles to distinguish different operators, allowing simple
depiction of commutation.

Logicographic symbols provide a very natural approach when calculating the properties
of physical, chemical, biological, geological and engineering systems that (1) are defined
conveniently by diagrams, e.g. molecules of organic substances, and metabolic pathways, and/or
(2) produce diagrams, e.g. spin coupling in nuclear magnetic resonance, and Feynman diagrams
in high energy physics. Recently, I started to explore notations analogous to the pipe function
to model the cumulative effect of physical processes that take place sequentially over a period of
time (Barnett, 2005b). The use of logicographic symbols in this work needs careful consideration,
too.

The National Research Council report ‘Mathematical challenges from theoretical/
computational chemistry’ called on mathematicians, computer scientists, chemists and chemical
biologists to overcome cultural differences in reaching out to the languages, mindsets and
interests of each other (National Research Council, 1995). I was trained as a chemist but I have
taught both natural science and computer science and I am vividly aware of these differences. I
hope that this paper will help the common cause of bringing the subjects together.

Acknowledgements

Because a large part of this paper encapsulates material developed over the past 15 years, I
thank L.C. Allen and J.F. Capitani for their support, advice and encouragement throughout this
time, K.M. Perry for his essential participation in the early stages of the work, M. Minimair for
help in crafting the present paper, and a referee for several valuable comments.

References

Abramowitz, M., Stegun, I., 1964. Handbook of Mathematical Functions. National Bureau of Standards, Washington,
DC.

Adams, A.A., Davenport, J.H., 2004. Mathematical knowledge management. In: Lecture Notes in Computer Science,
vol. 3119. Springer.

Automated deduction systems and groups, 2003. http://www-unix.mcs.anl.gov/AR/others.html.
Barnett, M.P., 1963. In: Alder, B. (Ed.), Methods of Computational Physics, vol. 2. Academic Press, New York,

pp. 95–153.
Barnett, M.P., 1989. Partial fraction formulas to sum slowly convergent series. SIGSAM Bulletin 23 (3), 13–86.
Barnett, M.P., 1990. Molecular integrals over Slater orbitals. Chem. Phys. Lett. 166 (1), 65–70.
Barnett, M.P., 1991. Summing Pn(cos θ)/p(n) for certain polynomials p(n). Comput. Math. Appl. 21 (10), 79–86.
Barnett, M.P., 1993. Implicit rule formation in symbolic computation. Comput. Math. Appl. 26 (1), 35–50.
Barnett, M.P., 1998a. Combining Mathematica and TeX. TUGboat 19 (2), 147–158.
Barnett, M.P., 1998b. A prototype three-center integral. http://www.princeton.edu/∼allengrp/ms/other/axcat.pdf.
Barnett, M.P., 2000a. Symbolic calculation of auxiliary functions for molecular integrals over Slater orbitals. Int. J.

Quant. Chem. 76 (3), 464–472.

http://www-unix.mcs.anl.gov/AR/others.html
http://www-unix.mcs.anl.gov/AR/others.html
http://www-unix.mcs.anl.gov/AR/others.html
http://www-unix.mcs.anl.gov/AR/others.html
http://www-unix.mcs.anl.gov/AR/others.html
http://www-unix.mcs.anl.gov/AR/others.html
http://www-unix.mcs.anl.gov/AR/others.html
http://www-unix.mcs.anl.gov/AR/others.html
http://www.princeton.edu/~allengrp/ms/other/axcat.pdf
http://www.princeton.edu/~allengrp/ms/other/axcat.pdf
http://www.princeton.edu/~allengrp/ms/other/axcat.pdf
http://www.princeton.edu/~allengrp/ms/other/axcat.pdf
http://www.princeton.edu/~allengrp/ms/other/axcat.pdf
http://www.princeton.edu/~allengrp/ms/other/axcat.pdf
http://www.princeton.edu/~allengrp/ms/other/axcat.pdf
http://www.princeton.edu/~allengrp/ms/other/axcat.pdf
http://www.princeton.edu/~allengrp/ms/other/axcat.pdf

M.P. Barnett / Journal of Symbolic Computation 42 (2007) 265–289 289

Barnett, M.P., 2000b. Two-center non-exchange integrals over Slater orbitals. J. Chem. Phys. 113 (21), 9419–9428.
Barnett, M.P., 2002. Digital erosion in the evaluation of molecular integrals. Theor. Chem. Acc. 107 (4), 241–245.
Barnett, M.P., 2003a. Transformation of harmonics for molecular calculations. J. Chem. Inf. Sci. 43 (4), 1158–1165.
Barnett, M.P., 2003b. Molecular integrals and information processing. Int. J. Quant. Chem. 95 (6), 791–805.
Barnett, M.P., 2003c. Symbolic calculation of integrals by recurrence. SIGSAM Bulletin 37 (2), 49–63.
Barnett, M.P., 2005a. Symbolic calculation and functional programming. http://www.princeton.edu/∼allengrp/ms/mscp/

scfpAll.pdf.
Barnett, M.P., 2005b. Symbolic calculation in the life sciences — some trends and prospects. In: Anai, H., Horimoto, K.

(Eds.), Proceedings of the Conference Algebraic Biology (Tokyo, 2005), Universal Academy Press, Tokyo, pp. 1–18.
ISSN 1880-6694. http://www.princeton.edu/∼allengrp/ms/annobib/mb.pdf.

Barnett, M.P., Capitani, J.F., 2006a. Modular chemical geometry and symbolic calculation. Int. J. Quant. Chem. 106 (1),
215–227.

Barnett, M.P., Capitani, J.F., 2006b. Interfacing GAUSSIAN with MATHEMATICA. http://www.princeton.edu/∼allengrp/
ms/igm/igmAll.pdf.

Barnett, M.P., Coulson, C.A., 1951. Evaluation of integrals occurring in the theory of molecular structure parts I and II.
Phil. Trans. R. Soc. London, Ser. A 243, 221.

Barnett, M.P., Decker, T., Krandick, W., 2001. Power series expansion of the roots of a secular equation containing
symbolic elements: Computer algebra and Moseley’s law. J. Chem. Phys. 114 (23), 10265–10269.

Barnett, M.P., Perry, K.R., 1994a. Hierarchical addressing in symbolic computation. Comput. Math. Appl. 28 (8), 17–35.
Barnett, M.P., Perry, K.R., 1994b. Symbolic computation for electronic publishing. TUGboat 15 (3), 285–292.
Buchberger, B., 2001. Logicographic symbols: A new feature in THEOREMA. http://www.risc.uni-linz.ac.at/people/

buchberg/papers/2001-06-25-A.pdf.
Cesco, J.C., Perez, J.E., Denner, C.C., et al., 2005. Rational approximants to evaluate four-center electron repulsion

integrals for 1s hydrogen Slater type functions. App. Num. Math. 55 (2), 173–190.
Coulson, C.A., 1942. Two-centre integrals occurring in the theory of molecular structure. Proc. Camb. Phil. Soc. 38,

210–223.
Gracey, J.A., 1998. Computation of perturbative renormalization group functions: The large Nf algorithm. Comp. Phys.

Comm. 115 (2–3), 113–123.
Gradshteyn, I.I., Ryzhik, I.M., 1979. Tables of Integrals, Series and Products. Academic Press.
Gumus, S., 2005. On the computation of two–center Coulomb integrals over Slater type orbitals using the Poisson

equation. Z. Naturforsc. A 60 (7), 477–483.
Guseinov, I.I., Mamedov, B.A., 2005. Fast evaluation of molecular auxiliary functions A(α) and Bn by analytical

relations. J. Math. Chem. 38 (1), 21–26.
Harris, F.E., 2002. Analytic evaluation of two-center STO electron repulsion integrals via ellipsoidal expansion. Int. J.

Quant. Chem. 88 (6), 701–734.
National Research Council, 1995. Mathematical challenges from theoretical/computational chemistry. National

Academy Press, Washington, DC.
Öztekin, E., Yavuz, M., Atalya, S., 2001. Theor. Chem. Acta 106, 264–271.
Piroi, F., Kutsia, T., 2005. The THEOREMA environment for interactive proof development. In: Sutcliffe, G., Voronkov, A.

(Eds.), Logic for Programming, Artificial Intelligence, and Reasoning. In: Lecture Notes in Artificial Intelligence, vol.
3835. Springer, pp. 261–275.

Pólya, G., 1954. Mathematics and Plausible Reasoning. Princeton University Press.
The PROVERB project, presentation of machine found proofs, 2000. http://www.ags.uni-sb.de/∼afiedler/proverb/detailed.

html.
Quiney, H.M., Wilson, S., 2005. Literate programming in quantum chemistry: A collaborative approach to the

development of theory and computer code. Mol. Phys. 103 (2–3), 389–399.
Rico, J.F., Lopez, R., Ema, I., et al., 2005. Translation of STO charge distributions. J. Comp. Chem. 26 (8), 846–855.
Systems incorporating flexible strategy-based reasoning, 2004. http://www.logic.at/strategies/home-systems.html.
Safouhi, H., Bouferguene, A., 2006. Symbolic programming language in molecular multicenter integral problem. Int. J.

Quant. Chem. 106 (1), 65–78.
http://www.risc.uni-linz.ac.at/research/theorema/software/demos/issac.
Theorema publications, 2004. http://www.theorema.org/publication.
Wang, D., Kuppermann, A., 2006. The use of symbolic algebra in the calculation of hyperspherical harmonics. Int. J.

Quant. Chem. 106 (1), 152–166.
Windsteiger, W., 2003. Exploring an algorithm for polynomial interpolation in the THEOREMA system. In: Proceedings

of Calculemus’03, 10–12 September 2003, Rome, Italy.
Wolfram, S., 2003. The Mathematica Book, 5th ed. Wolfram Media.

http://www.princeton.edu/~allengrp/ms/mscp/scfpAll.pdf
http://www.princeton.edu/~allengrp/ms/mscp/scfpAll.pdf
http://www.princeton.edu/~allengrp/ms/mscp/scfpAll.pdf
http://www.princeton.edu/~allengrp/ms/mscp/scfpAll.pdf
http://www.princeton.edu/~allengrp/ms/mscp/scfpAll.pdf
http://www.princeton.edu/~allengrp/ms/mscp/scfpAll.pdf
http://www.princeton.edu/~allengrp/ms/mscp/scfpAll.pdf
http://www.princeton.edu/~allengrp/ms/mscp/scfpAll.pdf
http://www.princeton.edu/~allengrp/ms/mscp/scfpAll.pdf
http://www.princeton.edu/~allengrp/ms/annobib/mb.pdf
http://www.princeton.edu/~allengrp/ms/annobib/mb.pdf
http://www.princeton.edu/~allengrp/ms/annobib/mb.pdf
http://www.princeton.edu/~allengrp/ms/annobib/mb.pdf
http://www.princeton.edu/~allengrp/ms/annobib/mb.pdf
http://www.princeton.edu/~allengrp/ms/annobib/mb.pdf
http://www.princeton.edu/~allengrp/ms/annobib/mb.pdf
http://www.princeton.edu/~allengrp/ms/annobib/mb.pdf
http://www.princeton.edu/~allengrp/ms/annobib/mb.pdf
http://www.princeton.edu/~allengrp/ms/igm/igmAll.pdf
http://www.princeton.edu/~allengrp/ms/igm/igmAll.pdf
http://www.princeton.edu/~allengrp/ms/igm/igmAll.pdf
http://www.princeton.edu/~allengrp/ms/igm/igmAll.pdf
http://www.princeton.edu/~allengrp/ms/igm/igmAll.pdf
http://www.princeton.edu/~allengrp/ms/igm/igmAll.pdf
http://www.princeton.edu/~allengrp/ms/igm/igmAll.pdf
http://www.princeton.edu/~allengrp/ms/igm/igmAll.pdf
http://www.princeton.edu/~allengrp/ms/igm/igmAll.pdf
http://www.risc.uni-linz.ac.at/people/buchberg/papers/2001-06-25-A.pdf
http://www.risc.uni-linz.ac.at/people/buchberg/papers/2001-06-25-A.pdf
http://www.risc.uni-linz.ac.at/people/buchberg/papers/2001-06-25-A.pdf
http://www.risc.uni-linz.ac.at/people/buchberg/papers/2001-06-25-A.pdf
http://www.risc.uni-linz.ac.at/people/buchberg/papers/2001-06-25-A.pdf
http://www.risc.uni-linz.ac.at/people/buchberg/papers/2001-06-25-A.pdf
http://www.risc.uni-linz.ac.at/people/buchberg/papers/2001-06-25-A.pdf
http://www.risc.uni-linz.ac.at/people/buchberg/papers/2001-06-25-A.pdf
http://www.risc.uni-linz.ac.at/people/buchberg/papers/2001-06-25-A.pdf
http://www.risc.uni-linz.ac.at/people/buchberg/papers/2001-06-25-A.pdf
http://www.risc.uni-linz.ac.at/people/buchberg/papers/2001-06-25-A.pdf
http://www.ags.uni-sb.de/~afiedler/proverb/detailed.html
http://www.ags.uni-sb.de/~afiedler/proverb/detailed.html
http://www.ags.uni-sb.de/~afiedler/proverb/detailed.html
http://www.ags.uni-sb.de/~afiedler/proverb/detailed.html
http://www.ags.uni-sb.de/~afiedler/proverb/detailed.html
http://www.ags.uni-sb.de/~afiedler/proverb/detailed.html
http://www.ags.uni-sb.de/~afiedler/proverb/detailed.html
http://www.ags.uni-sb.de/~afiedler/proverb/detailed.html
http://www.ags.uni-sb.de/~afiedler/proverb/detailed.html
http://www.logic.at/strategies/home-systems.html
http://www.logic.at/strategies/home-systems.html
http://www.logic.at/strategies/home-systems.html
http://www.logic.at/strategies/home-systems.html
http://www.logic.at/strategies/home-systems.html
http://www.logic.at/strategies/home-systems.html
http://www.logic.at/strategies/home-systems.html
http://www.risc.uni-linz.ac.at/research/theorema/software/demos/issac
http://www.risc.uni-linz.ac.at/research/theorema/software/demos/issac
http://www.risc.uni-linz.ac.at/research/theorema/software/demos/issac
http://www.risc.uni-linz.ac.at/research/theorema/software/demos/issac
http://www.risc.uni-linz.ac.at/research/theorema/software/demos/issac
http://www.risc.uni-linz.ac.at/research/theorema/software/demos/issac
http://www.risc.uni-linz.ac.at/research/theorema/software/demos/issac
http://www.risc.uni-linz.ac.at/research/theorema/software/demos/issac
http://www.risc.uni-linz.ac.at/research/theorema/software/demos/issac
http://www.risc.uni-linz.ac.at/research/theorema/software/demos/issac
http://www.risc.uni-linz.ac.at/research/theorema/software/demos/issac
http://www.theorema.org/publication
http://www.theorema.org/publication
http://www.theorema.org/publication
http://www.theorema.org/publication
http://www.theorema.org/publication

	Mathscape and molecular integrals
	Introduction
	Reasons for mathscape
	Mathscape principles
	The J integrals
	An inductive proof
	Constructing the general formulas
	Constructing a prototype
	Exploring the prototype
	The generalization
	Checking

	Molecular integrals
	Discussion
	Acknowledgements
	References

