The Shared Birthday paradox [This was in reply to a query from Quenton Steele]

If there are more than 23 people in a room, it's more likely than not that at least two of them share a birthday.

The following argument does ignore the existence of Feb 29 birthdays, but let's go along with this simplification.

P (something) simply means the probability of 'something' being the case.
Let's say there are N people in a room: label them as

$$
\{A, B, C, D, \ldots ., M=(N-1), N\}
$$

1) $A: P(A)=1$
2) $B: P(A \& B$ differ $)=364 / 365$
3) $C: P(A \& B \& C$ differ $)=364 / 365 \times 363 / 365$; [nb 2 factors]
4) $D: P(A \& B \& C \& D$ differ $)=364 / 365 \times 363 / 365 \times 362 / 365$ [nb 3 factors]
...
$\mathrm{N}) \mathrm{N}: \mathrm{P}(\mathrm{A} \& \mathrm{~B} \& \mathrm{C}$ \& D \& ... \& N differ $)=$ $364 / 365 \times 363 / 365 \times 362 / 365 \times \ldots \times(365-M) / 365$ [nb ($\mathrm{N}-1$) factors]

So the probability that they don't all differ, i.e. at least two are same, is
$1-(364 / 365 \times 363 / 365 \times 362 / 365 \times \ldots \times(365-M) / 365)$
If you work through the product (alternate divisions and multiplications) for $\mathrm{N}=22$ [NB make a note of this value !!!] and subtract from one, the answer should be just less than 0.5 (i.e. $<50 \%$), and if you do the same for $\mathrm{N}=23$ [reusing the figure already noted] the answer should be just greater than 0.5 (i.e. $>50 \%$),

