Clock Calculations [This was in reply to a query from Merwyn Colaço]

(Formula A) For linear motion, distance travelled = linear speed * time taken where linear speed is measured in miles per hour (say)

(Formula B) For circular motion, distance travelled = angular speed * time taken where angular speed is measured in radians per hour (say) remembering that $2 * \pi$ radians = 360 degrees

The minute hand turns through 360 degrees in 1 hour so its angular speed ω_1 = 2 * π (radians/hour)

The hour hand turns through 360 / 12 = 30 degrees in 1 hour so its angular speed ω_1 = 2 * π / 12 = π / 6 (radians/hour)

so the angular speed of the minute hand <u>seen from the hour</u> hand's point of view is $2 * \pi - \pi / 6 = 11 * \pi / 6$ (radians/hour)

Thus the angle that develops between the hour hand and the 'run-away' minute hand over a period of h hours is ϑ = (11 * π / 6) * h , as per Formula B above.

Now, remember that $\cos{(0)} = 1$ and $\cos{(\pi/2)} = 0$ and $\cos{(\pi)} = -1$ and $\cos{(3\pi/2)} = 0$

0 corresponds to coincident hands, $\pi/2$ and $3\pi/2$ corresponds to perpendicular hands, and π to opposing hands.

So for coincident hands, $\cos(11\pi \text{ h/ 6}) = \cos(0) = 1$ & for perpendicular hands, $\cos(11\pi \text{ h/ 6}) = \cos(\pi/2 \text{ or } 3\pi/2) = 0$ & for opposing hands, $\cos(11\pi \text{ h/ 6}) = \cos(\pi) = -1$

Let's focus on perpendicular hands, and think back to the $cos(\vartheta)$ graph from the Good Old Days: $cos(\vartheta) = 0$ for $\pi/2$, $3\pi/2$, $5\pi/2$, $7\pi/2$, $9\pi/2$,

ie for multiples 1, 3, 5, 7, 9, ... of $\pi/2$ ie for multiples 2n +1 of $\pi/2$ where n = 0, 1, 2, 3, 4, ...

so $11\pi h/6 = (2n + 1) * \pi/2$

ie h = 3*(2n + 1) / 11 are the times for which the hands are perpendicular.

By inspection, h is just over 24 for n = 44, which is therefore disallowed. So n = 0, 1, 2, 3, 4, ..., 43, a total of 44 occasions.