Clock Calculations

[This was in reply to a query from Merwyn Colaço]
(Formula A) For linear motion, distance travelled = linear speed * time taken where linear speed is measured in miles per hour (say)
(Formula B) For circular motion, distance travelled = angular speed * time taken where angular speed is measured in radians per hour (say) remembering that 2 * π radians = 360 degrees

The minute hand turns through 360 degrees in 1 hour so its angular speed $\omega_{1}=2$ * π (radians/hour)

The hour hand turns through $360 / 12=30$ degrees in 1 hour so its angular speed $\omega_{1}=2 * \pi / 12=\pi / 6$ (radians/hour)
so the angular speed of the minute hand seen from the hour hand's point of view is 2 * $\pi-\pi / 6=11$ * $\pi / 6$ (radians/hour)

Thus the angle that develops between the hour hand and the 'runaway' minute hand over a period of h hours is $\vartheta=\left(11^{*} \pi / 6\right)^{*} h$, as per Formula B above.

Now, remember that $\cos (0)=1$ and $\cos (\pi / 2)=0$ and $\cos (\pi)=-1$ and $\cos (3 \pi / 2)=0$

0 corresponds to coincident hands, $\pi / 2$ and $3 \pi / 2$ corresponds to perpendicular hands, and π to opposing hands.

So for coincident hands, $\cos (11 \pi \mathrm{~h} / 6)=\cos (0)=1$
\& for perpendicular hands, $\cos (11 \pi \mathrm{~h} / 6)=\cos (\pi / 2$ or $3 \pi / 2)=0$
\& for opposing hands, $\cos (11 \pi \mathrm{~h} / 6)=\cos (\pi)=-1$
Let's focus on perpendicular hands, and think back to the $\cos (\vartheta)$ graph from the Good Old Days: $\cos (\vartheta)=0$ for $\pi / 2,3 \pi / 2,5 \pi / 2$, $7 \pi / 2,9 \pi / 2, \ldots .$.
ie for multiples $1,3,5,7,9, \ldots$ of $\pi / 2$
ie for multiples $2 \mathrm{n}+1$ of $\pi / 2$ where $\mathrm{n}=0,1,2,3,4, \ldots$
so $11 \pi h / 6=(2 n+1) * \pi / 2$
ie $\quad h=3^{*}(2 n+1) / 11$ are the times for which the hands are perpendicular.

By inspection, h is just over 24 for $\mathrm{n}=44$, which is therefore disallowed. So $n=0,1,2,3,4, \ldots, 43$, a total of 44 occasions.

