Eqn 11c Help
Differentiating loge {u + √(1+u2)} using the 'function of a function' rule we get
| = |
|
|||||||||||
| = |
|
||||||||||||
| = |
|
||||||||||||
| = |
|
||||||||||||
| So the anti-derivative (indefinite integral) of 1 / √(1+u2) is loge {u + √(1+u2)}: | |||||||||||||
| ∫ du / √(1+u2) | = | loge {u + √(1+u2)} | |||||||||||
Differentiating loge {u + √(1+u2)} using the 'function of a function' rule we get
| = |
|
|||||||||||
| = |
|
||||||||||||
| = |
|
||||||||||||
| = |
|
||||||||||||
| So the anti-derivative (indefinite integral) of 1 / √(1+u2) is loge {u + √(1+u2)}: | |||||||||||||
| ∫ du / √(1+u2) | = | loge {u + √(1+u2)} | |||||||||||